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INVITED ARTICLE

Liquids with conics

M. Klemana* and O.D. Lavrentovichb*

aInstitut de Physique du Globe de Paris, 4, place Jussieu 75252 Paris ce�dex 05, France; bLiquid Crystal Institute and Chemical

Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, USA

(Received 3 February 2009; final form 11 February 2009)

A red thread marks the history of liquid crystals from the start; it is the concept of focal conic domains in smectic
phases. Discovered by G. Friedel and F. Grandjean early in the beginning of the 20th century, focal conic domains
still attract the attention of researchers in the field. The presence of focal conic domains is a touchstone of layered
media. They rightly excited the interest of P.-G. de Gennes in a seminal paper about the Apollonius tiling of toric
focal conic domains. In this paper we shall review the development of this notion over the last one hundred years,
firstly emphasising its importance in the appearance and broadening of the concept of order and of its singularities
in liquid crystals and beyond in condensed matter physics, through the renewed notions of dislocations, disclina-
tions, grain boundaries, kinks and focal conic domain imperfections, then describing the empirical evidence of focal
conic domains in various liquid crystalline materials, and finally how they have inspired research in visualisation
methods and molecular architectures.

Keywords: Smectic A; focal conic domains; disclinations; kinks; double helices; 3D microscopy

1. Introduction

The history of liquid crystals (LCs) starts with the

discovery that certain liquids are birefringent and dis-

play figured elements that do not break the continuous
liquid character of the phase, easily change shape and

size, easily disappear or multiply, and depend on static

and dynamic boundary conditions. These elements,

later called defects or singularities, appear under dif-

ferent aspects in different liquid crystalline phases;

indeed their observation in polarising light micro-

scopy allows for a characterisation of the liquid crys-

talline phase, whether it is nematic, cholesteric,
smectic, columnar, etc. Lamellar phases from that

point of view are very easy to identify, thanks to the

presence of macroscopic line defects (whose size in

general scales with the size of the sample), such as

oily streaks, focal conic domains (FCDs), double

helices (DHs), etc. Among this set of macroscopic

objects the FCDs are particularly remarkable by the

presence of conics (an ellipse and a hyperbola going in
pairs, as it was soon recognised). These conics may

look perfect in smectic A phases (SmAs), at least in

current light microscopy observations (Figure 1(a)) or

present imperfections that in some circumstances can

be analysed in geometric terms. Other lamellar phases,

liquid like smectic C phases (SmCs), or with a layer of

partial two-dimensional ordering, such as smectic B

(SmB), show up similar figures, but broken in specific

ways. This paper will concentrate on FCDs and their

interplay with other defects in a SmA.

Lehmann (1, 2) was the first to attach importance to

defects in LCs; he not only described them in great

detail with the purpose of correlating them to the mole-

cular structure, but he also advanced that some of them
are related to primitive aspects of life, in particular the

very mobile SmA nuclei that appear at the transition

from an isotropic phase to a SmA phase (Figure 1(b)).

However, the true physical characteristics of these

nuclei, in no way indicative of life, were first cleared

up by Friedel and Grandjean (3); these bâtonnets (rod-

like formations), as they called them, are made of con-

joint domains bordered by paired conics. Such domains
persist in the bulk when the transition to the SmA phase

is completed. In an article – Liquides á coniques focales –

whose title we have borrowed for the present paper,

they related the existence of these conics and the

domains they border to large scale arrangements

where the layers conserve perfect parallelism, but are

allowed to curve (3). This condition provides a guide in

the analysis of a whole family of defects, as follows.

1.1 Focal conic domains

A well-known result concerning a family of parallel

surfaces, Si, is that their normals envelop two focal

surfaces, F1 and F2, which are the loci of the centers of
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curvature C1 and C2, common at all the surfaces along

a common normal (Figure 2(a)). If these Sis are SmA

layers, their normals carry the molecular directions n.

The curvature |divn| is infinite at C1 and C2; F1 and F2

are thus singularities of the director field, where the

smectic order parameter is broken, and the energy
attached to these singularities necessarily scales as

the area of F1 and F2. It is therefore reasonable that

small energy parallel arrangements are such that the

focal surfaces are degenerated to lines. However, it can

be demonstrated that these focal lines form a set of two

conjugate conics (i.e. an ellipse and a branch of hyper-

bola in two orthogonal planes, such that the apices of

one are the foci of the other). The layers take the shape
of Dupin cyclides (Figure 2(b)) (for a good qualitative

presentation of these surfaces, see (4)).

The geometric regularity and beauty of these FCDs

has attracted the attention of a number of researchers,

e.g. Friedel (5), Bragg (6), Chystiakov (7), Bouligand
(8) and cf. (9) for a historical review with emphasis on

the work of G. Friedel. In this vein, Bidaux et al. pub-

lished a seminal paper in 1973 (10) about the

Apollonius packing of toric FCDs (TFCDs). Such

arrangements, where the ellipse is reduced to a circle,

the hyperbola to a straight line, passing through the

centre of the circle, and the Dupin cyclides to tori, has

been observed in several circumstances, e.g. in a L�
phase (11). This will be discussed in Section 3.

There are several types of FCDs, depending on

the sign of the Gaussian curvature of the layers.

Figure 3 represents the different cases, which are

explicited in the caption. Take a straight line joining

any point M on the ellipse to any point P on the

branch of the hyperbola; by the very definition of a

normal to a set of parallel surfaces, the infinite line
L = MP is such a normal. However, passing to the

interpretation of L as a base for the director, it

appears visible that the three segments into which it

is divided (the finite segment MP and the two out-

side half-infinite lines M1 and P1) are orthogonal

at a point Z P L to layers of opposite Gaussian

(a)

(b)

Figure 1. Polarised light microscopy: (a) FCDs in a thick
(120 mm) sample of dodecylcyanobiphenyl (12CB) – notice
FCDs of different orientation, with ellipses parallel to the
plane of view (1), ellipses perpendicular to the plane of view
(2,3) and FCDs forming a grain boundary (3); (b) SmA
bâtonnets nucleating from the isotropic phase, on which
small FCDs are visible.

(a)

(b)

Figure 2. (a) Schematic representation of a set of parallel
surfaces Si, their normals, and the loci of the centres of
curvature C1 and C2, the focal surfaces F1 and F2; (b) F1

and F2 degenerated into two conjugate conics E (ellipse) and
H (hyperbola). The straight lines are normals to the cyclides.
Numbers 1, 2, and 3 label three different types of Dupin
cyclides: with cusps at the ellipse (1), cusp-free (2), and with
cusps at the hyperbola (3).
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curvatures G ¼ 1=�E�H , (�E ¼ 1=ZM; �H ¼ 1=ZP),

namely G is negative for Z between M and P, positive

outside. Empirically it is observed that the vast majority

of FCDs are made of layers of negative Gaussian curva-

ture; this condition restricts the layers to the inner part

of two half cylinders symmetrical with respect to the

plane of the ellipse, as in Figure 3(a) (complete ideal
FCD of type I). Figures 3(b) and 3(c) represent FCDs

with positive G of layers. The geometry of Figure 3(b)

has been observed in a lyotropic L� phase (12). A

detailed description can be found in (13).

Of course, since the layers of a FCD are parallel,

the main energy contribution is curvature energy.

Two final remarks: (i) the limiting case of FCDs of

vanishing eccentricity e = 0 are TFCDs. FCDs of unit

eccentricity, e = 1, made of two conjugate parabolae
(14), have a small curvature energy per unit volume

and are very frequently observed; (ii) the layer paral-

lelism condition is not observed in the core regions of

E and H, which are singular regions (15).

1.2 Small Burgers vector dislocations

Whereas FCDs are mostly macroscopic, visible
objects, there are, at the other extreme, dislocations

of small Burgers vector b (Figure 4); small means

here that b is comparable to the SmA repeat dis-

tance d0, so that they are not visible in polarising

light microscopy. Dislocations of small b do not

fulfil the condition of parallelism of the layers,

which is central in the stability of FCDs. This is a

field in which de Gennes has also been active; he
gave the first calculation of the layers profile and

energy of an edge dislocation, using a linearised

version of SmA elastic free energy density (16). At

such small scales, it is important to take into

account the strain energy, which may balance the

curvature energy. Recent developments account for

a non-linear term in the strain energy (17, 18) that

leads to pronounced experimentally observed fea-
tures of layer distortions around the edge disloca-

tion (19).

1.3 A classification of line defects in a SmA

In-between dislocations at molecular scales and

ideal FCDs, one finds a menagerie of various

defects, characterised by various levels of interplay

(c)

(b)

(a)

Figure 3. (a) Complete FCD of type I; the layers are
restricted to their negative Gaussian curvature parts –
notice that they can be prolongated outside the domain by
planar layers that have to meet in the region of the plane of
the ellipse (see Section 3); (b) FCD of type II, layers of
positive Gaussian curvature – notice that the ellipse does
not appear as a singular line; (c) the presence of both
positive and negative Gaussian curvature layers.

Figure 4. (a) Cross section of an edge dislocation, the
Burgers vector is perpendicular to the line; (b) screw
dislocation, the Burgers vector is parallel to the line.
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between dislocations of a small Burgers vector and

FCDs at different scales. These are:

– Clusters of parallel edge dislocations, also called

oily streaks. These oily streaks, when b is large

enough (in fact macroscopic, it can be as large as

several thousands repeat distances), split into
FCDs in contact along their ellipses (20).

– Clusters of parallel screw dislocations, which

recompose into an attached sequence of distorted

partial focal conics, forming DHs (21). They are

described in Section 2.3.

– Clusters of FCDs forming tilt grain boundaries

(10, 22). They are discussed in Section 3.

1.4 Volterra process and topological defects

We refer the reader to (23) and (24) for a full presenta-

tion of the Volterra process (VP), by which it is possi-

ble to construct all the line defects of an ordered

medium with the sole recourse to its properties of
symmetry in its ground state. However, a detailed

knowledge of the VP is not necessary here. We recall

that dislocations (they break translational symmetries

(23)) and disclinations (they break rotational symme-

tries (24)) can be treated as Volterra defects. Frank’s

renowned paper (25) introduces the notion of disclina-

tion in nematics as resulting from a VP; he used at that

time the word disinclination. Insofar as a disclination
breaks the rotational symmetries of the director field

of a LC, there is no difference in definition between a

disclination in a nematic and in a SmA, since the

director fields are similar. The differences come from

the elastic properties, which are drastically different,

due to the presence of layers in a SmA.

The FCD ellipse and hyperbola are special discli-

nations. Indeed, choose any point on the hyperbola,
the director is rotated by an angle of 2� about the

tangent to the hyperbola at this point; choose any

point on the ellipse, the director is rotated by an

angle � ¼ � about the tangent t to the layer at this

point (see Figure 11, Section 3.2). However, their con-

struction through the VP is revealed to be impossible,

at least for the ellipse. This is because of the subtle

properties of interaction between the dislocations and
disclinations. The solution is in an extended VP, whose

essentials are discussed in Section 2.2.

2. Interplay between focal conic domains and

dislocations: elasticity, kinks

The interplay between FCD disclinations (E and H)

and dislocations involves: i) the elastic properties of a

SmA, and ii) the extended Volterra properties of the

partners in interaction, which is captured in the notion

of kink. The extended VP also embraces the descrip-

tion of the relaxation of all the deformations that do

not contribute to the energy in Equation (1), e.g. the

easy glide of layers one past another. In terms of VP,

these deformations can be attributed to the interaction

of continuous dislocations with a disclination (26).

Disclinations and dislocations are present in all LC
phases, so this notion is rather general. Its study does

not require the use of the rather highbrow concepts of

the algebraic topology of defects (13); a more elemen-

tary geometric approach akin to the VP will serve our

purpose (26).

2.1 The elasticity of defects in a SmA phase

We make the differences between the small and large

scales we have introduced above explicit. The two
contributions – strain elasticity, i.e. the compressibility

of the layers, curvature elasticity, i.e. the curvature of

the layers – have different ranges of action. Let R be

the typical size of a domain submitted to some com-

pression or tension: the strain energy scales as

Fstrain � BR3, the curvature energy as Fcurv � KR.

B and K are the classic moduli of the free energy density

f ¼ 1

2
K div nð Þ2þ 1

2
B 1� d

d0

� �2

þ �K�
E
�

H
; �2 ¼ K

B
; ð1Þ

where n(x,y,z) is the director, d(x,y,z) . 0 the thick-

ness of the deformed layer, and � a material length
that cannot be much different from d0, the thickness

of an unperturbed layer. The term �K�E�H (�K is the

saddle-splay modulus) can be integrated to a surface

term and should be considered whenever the topology

of layers is altered; this is precisely the case of layers

in FCDs as compared to flat layers. The ratio

Fstrain=Fcurv ¼ R=�ð Þ2 is much larger than unity as

soon as R > �. Therefore, the only distortion of a
macroscopic medium should be curvature: the layers

with vanishing strain are parallel. On the other hand,

at small scales, the strain energy and the curvature

energy can balance. Another remark, which later will

prove important, is that the curvature contribution of

a layer with vanishing mean curvature (a minimal

surface) vanishes: divn;� �E þ �Hð Þ ¼ 0 (this is the

case when a layer takes the shape of a ruled helicoid as
the central layer of a small Burgers vector screw dis-

location – see Figure 26(a) and (b) in (13)). Therefore,

a layer close to a minimal surface, and more generally

a layer with negative Gaussian curvature, is expected

to have a smaller curvature energy than a layer of the

same area with G . 0, which favours type I FCDs.

Another element to stabilise G , 0 is the saddle-splay

modulus, whose sign is indifferently .0 or ,0.
Clearly, �K > 0 favours �E�H<0. We refer the reader
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to (13) for a description of the energetics of defects in

a SmA; (27) is dedicated to the case of FCDs with

negative Gaussian curvature, with a full account of

the saddle-splay contribution.

2.2 Kinks and imperfect FCDs

When they are in contact, the interplay between a dis-

clination conic and a dislocation shows up specific

features that result in a local distortion of the conic

away from its ideal elliptic or hyperbolic shape, at the

location where the two defects meet. Such local distor-

tions are called kinks. They have recently been reported

in smectic phases of various LC materials (28, 29).

The concept of kink is very general; it is valid for all
dislocation–disclination interactions, in smectics as

well as in nematics and other media where the concepts

of dislocation and disclination both make sense. The

principle of the interaction is sketched in Figure 5.

Consider a disclination line, with rotation angle

W ¼ �t about a fixed axis t, made of two half infinite

wedge segments1, A¢A and BB¢, linked by a segment

AB of twist character, a kink on the disclination A¢B¢
(Figure 5(a)). This geometry is equivalent to the geo-

metry of Figure 5(b), where the segment BB¢ has been

‘smoothly’ transported to the position BB† and its

orientation reversed, so that it can now be considered

as carrying the rotation vector�W. The segments A¢A
and BB† are wedge disclination segments of opposite

rotations and carry together a translation

b ¼ 2 sin
�

2
t · AB; ð2Þ

where W ¼ �t. Thereby they together are equivalent

to a dislocation of Burgers vector b (26). Thus, because

of the law of conservation of the Burgers vector, a

dislocation of Burgers vector b is attached to AB in

Figure 5(b). Transporting BB† back to BB¢ ‘smoothly’,

it appears that a dislocation with the same Burgers

vector b is attached to the kink AB (Figure 5(a)).

b has to be a translational symmetry of the medium

under consideration, i.e. in a smectic a multiple of the

layer thickness d0, or a continuous translation parallel

to a layer (which is a two-dimensional liquid media).
However, this reasoning applies to any medium (see

(26) for details), in particular for the role played by

attached dislocations in the mobility and flexibility of

disclinations, which we do not develop.

Let us apply Equation (2) to the FCD case. The

Burgers vectors of the attached dislocations are either

perpendicular to a direction belonging to the plane of

the ellipse or of the hyperbola, if the kink is parallel to
these planes (first type), or parallel to the plane of the

ellipse or of the hyperbola, if the kink is orthogonal to

these planes (second type). However, whichever the case

may be, the Burgers vectors, which are along the trans-

lation symmetry directions, have to be either perpendi-

cular to the smectic layers, if the broken translations are

quantised (b = nd0), or parallel to the layers if the bro-

ken translations are continuous. Again, observe that the
foregoing considerations do not appeal at all to the

topological theory of defects, but to the more ancient

VP, suitably extended with the notion of kink (26).

Figure 6 features an ellipse (very close to a circle) with

Figure 5. (a) Kink on a dislocation of strength W, b is the
Burgers vector total attached to AB; (b) same as (a) with
another orientation of a part of the line, exhibiting the
equivalence of a dislocation and two disclinations of
opposite signs at a distance AB.

Figure 6. Macroscopic kink on an ellipse of small
eccentricity. The dislocations attached to this kink have a
Burgers vector orthogonal to the plane of the ellipse, and are
located outside the FCD – see text (courtesy of Yu. A.
Nastishin).
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a macroscopic kink in the plane of the ellipse – accord-

ing to Equation (2), the Burgers vector total of the

attached dislocations is perpendicular to this plane.

Since the Burgers vector is orthogonal to the layers,

one expects that these dislocations pierce a set of layers

quasi-parallel to the plane of the ellipse. Such layers are

present outside the focal domains, which suggests that
the attached dislocation lines are outside the FCD.

In Section 3 we discuss how the ellipse of a FCD

can be understood as a kinked disclination, with a

density of dislocations attached to it.

2.3 The double helix

The geometry of Figure 7(a) represents the ideal con-
figuration for the central region of a screw dislocation

with a giant Burgers vector; this configuration is ideal

in the sense that it captures the main incentive for the

recomposition of the screw dislocation singularity into

a DH; namely, it guarantees the parallelism of the

layers, at least in the region limited to the interior of

the helices. However, it cannot be so outside, and the

observed DHs are in fact much distorted compared to
the ideal configuration, as we explain below.

In Figure 7(a) the central layer H(0), which con-

tains the axis of the screw dislocation, is a ruled heli-

coid of pitch p = b. The other layers, H(i), are stacked

upon H(0) at distances id0, i = 0,1,2,. . .; all the H(i)s

being parallel to H(0) and parallel between themselves

have common straight normals. The H(i)s, i � 0, are

not minimal surfaces. Therefore, there is some curva-
ture energy but no strain energy. Furthermore, there is

no core singularity.

However, a singularity still exists, but it is rejected

along the focal surfaces of the parallel H(i)s. These focal

surfaces are two equal helicoids, with the same pitch as

the dislocation; each of them has a helical cuspidal edge,

located at a distance b=2� of the axis. Hence the name of

DH for the cuspidal edges, which constitute two visible

singularities (Figure 7(c)), as we now explain. Notice

that the normals to the layers (which are horizontal in

Figures 7(a) and 7(b)) join one helix point to another

one on the other helix: the helices are conjugate. The
region immediately beyond the cuspidal edge is covered

twice by the layers – the helical geometry cannot be

continued smoothly. Empirically, one observes that the

SmA phase is arranged as in Figure 7(b), outside the

cylindrical region defined by the helical cuspidal edges.

The cuspidal edges then appear as two disclinations of

rotation angle �, about which the helicoids are folded.

A DH is obviously very different to an imperfect
FCD, because the conjugate focal surfaces are not degen-

erated to lines. Therefore, the imperfections cannot be

analysed in low energy kinks. Williams, who first discov-

ered DHs in the SmA phase of a nematogenic compound

(21), has noticed how they originate as very distorted

disclinations in a twisted nematic, at the N ) SmA

transition. In the first stage of this process one observes

fragments of conjugate ellipses and hyperbolae, which
transform into fragments of helices.

A side remark: in the astonishing B7 phase, which is

a chiral lamello-columnar phase, the inner part of the

cylinder takes the ideal configuration of Figure 7(a),

because it cannot smoothly be prolonged outside, the

outer part is totally disorganised, i.e. is liquid (30, 31).

3. Grain boundaries

3.1 The w = 0 Apollonian packing

This is de Gennes’ main contribution to the subject of

FCDs, and if we are not misled, his last effort in the

physics of LCs per se, a domain of research that he did

not encourage his former collaborators in this field to

pursue. This was when he moved in 1972 from the
Laboratoire de Physique des Solides in Orsay to the

College de France, where his great accomplishments in

the physics of polymers were to be completed. De Gennes

was used to totally abandoning a former subject of

research when he entered a new one, sometimes ostenta-

tiously distancing himself from the first one, for example

when he passed from superconductors to LCs. He rea-

lised how this attitude was excessive when high tempera-
ture superconductors were discovered. He was also used

to marking the end of an effort in a given domain by the

publication of a book that closed the case for a time. ‘The

Physics of Liquid Crystals’, published in 1974 (32), was

the bible of a generation of scientists. This text was little

amended, but largely augmented 20 years later by Prost,

with new topics such as columnar, incommensurate

phases and phase transitions.

Figure 7. (a) Three-dimensional perspective view: stacking
of helicoidal layers on each side of central ruled helicoids
and of the two disclinations about which they are folded.
Only the central region inside the cylinder limited by the
disclinations is drawn; (b) schematical representation of a
cut along a meridian plane; (c) a DH in the SmA phase of
cholesterylnonanoate, with b � 50 mm (courtesy of C.
Meyer). Adapted from (13) for (a) and (b).
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Bidaux et al. (10) recognised that the very reason for

the FCDs to occur in lamellar systems is the necessity of

satisfying boundary conditions that often do not allow

the system to adopt the geometry of flat parallel layers.

As a particular example, Bidaux et al. (10) imagined a

grain boundary, as in Figure 8, that serves to match the

conflicting boundary conditions at the two parallel
plates confining the smectic material: one plate sets a

perpendicular orientation of the LC molecules and

another sets a tangential orientation. They proposed

that the grain boundaries are relaxed by TFCDs (10).

In fact, the grain boundary shown in Figure 8 can-

not be relaxed by TFCDs with bases of zero eccentricity;

as explained later, it can be related by FCDs of non-zero

eccentricity. The TFCD (as opposed to a regular ellipse-
hyperbola FCD) geometry implies that the layers on

both sides of the grain boundary are in fact parallel to

each other rather than tilted by 90 degrees as in Figure 8.

In other words, the TFCD grain boundary is of vanish-

ing misorientation ! = 0 and there is no physical reason

to introduce the TFCD with curved layers in the situa-

tion when the SmA can be perfectly uniform. Although

the TFCD approach does not reflect the physical
essence of the grain boundary problem, it does allow

one to trace the important geometrical features of filling

the space with FCDs, namely, (a) the scaling character

of filling the plane with the bases of FCD and (b) the

nature of the residual areas between the FCD.

The iterative filling of the grain boundary with the

circular bases of the TFCD considered in (10) was

based on the well-known Apollonius’ packing of circles,
in which one starts with a system of large touching

circles and then fills the interstices between them with

smaller circles that are tangent to those already present

and then repeats this iteration process (Figure 9). If L is

the radius of the largest circles and b of the smallest, one
expects that all the relevant quantities, such as the

number g of circles of radii between L and b, their

perimeter P and the residual area left not covered by

the circles �, scale algebraically with the dimensionless

quantity L=b (10):

gðbÞ ¼ const:
L

b

� �n

; PðbÞ ¼ const:b
L

b

� �n

;

�ðbÞ ¼ const:b2 L

b

� �n

:

ð3Þ

Relatively recent numerical calculations (33)

show that the exponent n is approximately 1.3057.

Interestingly, Bidaux et al., using computer simula-

tions available to them in the early 1970s, found a

very close value of n � 1:3069. In the late 1970s,

Mandelbrot presented the model of (10) as one of

the first clearly recognised examples of fractal
behaviour in physical systems (34). He commented

that ‘if it were possible to proceed without end, we

would achieve exact Apollonian packing’.

Of course, one cannot proceed without end.

Physically, the iterations should stop when the size of

the TFCD become so small that the associated strong

curvatures of layers are no longer compatible with the

very structure of the SmA phase. The energy and the
radius of the smallest domain of grain boundary with a

zero tilt have been estimated in (10) as follows.

The energy of a TFCD of radius b scales as Kb, hence

the contribution to the total energy of the circles of radius

R > b scales as Wline , KPðbÞ ¼ const:Kb L=bð Þn. The

residual regions are elastically deformed over a distance

from the plane of the boundary of order � ¼
ffiffiffiffiffiffiffiffiffi
K=B

p
,

hence Wresid , B��ðbÞ ¼ const:Bb2� L=bð Þn. After

Figure 8. An example of the hybrid boundary conditions
imposed on the SmA sample by a pair of flat bounding
plates. The boundary conditions are relaxed by the grain
boundary. As explained in the text, the geometrically
correct relaxation of the grain boundary in this figure
should contain ellipses of non-zero eccentricity, in this
particular case of e ¼ 1=

ffiffiffi
2
p

.

Figure 9. Apollonius’ packing of circles.
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minimisation of Wline þWresid with respect to b, the value

of b at the final iteration is b�,
ffiffiffiffiffiffiffiffiffi
K=B

p
¼ �, i.e. a micro-

scopic length determined by a ratio of the curvature and

compressibility elastic moduli. This result comes as no

surprise, since the grain boundary is located in the SmA

bulk, and the only characteristic length scale of the SmA

bulk is the smectic layer thickness d0, or the closely

related penetration length � ¼
ffiffiffiffiffiffiffiffiffi
K=B

p
� d0. The energy

per unit area of the grain boundary is

�FCD,L�2 L=b�ð ÞnB�2b�.
As suggested by Bidaux et al. (10), the closest phy-

sical realisation of the TFCD model might be a SmA in

a ‘hybrid’ aligned cell (Figure 8). For example, it might

be a film of SmA placed onto a surface of a fluid that

does not mix with the SmA material and sets tangential

orientation of the molecules. A suitable pair for fluid-
SmA is glycerine and octylcyanobiphenyl (8CB). At the

upper surface, left free, the orientation of 8CB mole-

cules is perpendicular. The texture of such a hybrid

aligned SmA film reveals that the TFCDs do indeed

form an iterative pattern of Apollonius’ type.

However, the experimental pattern (Figure 10) dif-

fers from the original model in two aspects. Firstly, the

circular bases of the TFCDs are located at the
SmA–glycerine interface and not in the bulk of the LC.

Secondly, the iterations stop at scales much larger than

the molecular one. These two features are in fact deeply

related, as the pattern is determined by the balance of

surface anchoring energy and elastic energy (35, 36). By

placing the circular base of a TFCD at the interface with

glycerine, one decreases the total energy of the system by

the surface anchoring energy gain ,�b2ð�jj � �?Þ< 0;
here �jj and �? are the surface energy densities for

molecules oriented parallel and perpendicular to the

substrate, respectively, �jj<�?. Balancing this with the

elastic energy of curved layers Kb, one finds the mini-

mum size of the TFCD as b�, K
�?��jj (35), which is of the

order of 1–10 mm, for the typical estimates K,10 pN,

�? � �jj,10�5 J m�2. The latter estimation can be mod-

ified by taking into account the additional surface
tension term associated with the depression of the free

surface near the axis of the TFCD (37), but the impor-

tant feature to observe is that it is the tangential surface

anchoring and rectangular confining geometry that drive

the formation of TFCDs of size b � b�.

3.2 The disclination ellipse as a kinked disclination

Applying Equation (2) to a circular wedge disclination

(the circle in a TFCD), with AB = ds the vector dis-

tance between two infinitesimally close points on the

circle, yields b = 0. For a disclination ellipse (Figure 11)
the local rotation vector belongs to the plane of the

ellipse and is along the intersection of the layers with

the plane of the ellipse, inside the ellipse (28). The

Burgers vector of the dislocation attached to a segment
of the ellipse between r and r + dr (Figure 11) is

db ¼ 2 sin
�

2
t · MN ¼ 2dr u; ð4Þ

where u is a unit vector orthogonal to the plane of the

ellipse. Hence, the total Burgers vector attached to a

disclination ellipse is
R

db integrated along the ellipse
between the two apices, namely b = 2 c u. It is useful to

let the length of the long axis of the ellipse appear, so

that we have b = 2 a e u. The eccentricity e can be

(a)

(b)

Figure 10. An iterative filling of the SmA film
(octylcyanobiphenyl) with TFCDs seen through a
polarising microscope as bright discs with Maltese crosses.
(a) The film is placed on the surface of glycerine that
produces degenerate tangential anchoring of SmA
molecules at the lower boundary; at the upper free
boundary, the orientation of molecules is perpendicular.
The iterative system of TFCDs interrupts at the scale of a
few micrometers. The scheme in (b) shows three families of
Dupin cyclides corresponding to three touching TFCDs.
The circular and axial defect lines are shown only for one
TFCD. For the two others, only some of the Dupin cyclides
are shown. The circular defects lie in the plane of the
interface. Only one iteration of TFCDs is shown. The
interstices can be smoothly filled with layers parallel to the
interface with the substrate. Note that the smectic layers
approach the interface under the right angle.
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expressed in function of the angle!=2 of the asymptotes

of the hyperbola with u, e ¼ sin!=2, so that

b ¼ 2 a sin
!

2
u: ð5Þ

Thus, a disclination ellipse is a kinked disclination

whose local rotation vector is ð�=2Þt. The plane of the

ellipse separates two smectic domains, which, inside

the same FCD (at a distance along the asymptotes),

are misoriented one with respect to the other by an

angle of !� 0 about a rotation axis along the minor

axis of the ellipse (see Figure 3(a)). This explains why

tilt grain boundaries can be made of a planar packing
of ellipses of the same eccentricity and whose minor

(and thus major) axes are parallel.

3.3 The v „ 0 Apollonian packing

There is a complete mapping between the ! ¼ 0

Apollonian packing and the !� 0 packing just men-

tioned – each circle of the Apollonian packing is
replaced by an ellipse of eccentricity e = sin!/2. The

ellipses having parallel major and minor axes, all the

asymptotic directions of the related hyperbolae are

parallel. Each FCD of the !� 0 tilt boundary is com-

plete (as sketched in Figure 3(a)) and is in contact with

a neighbouring complete FCD along two generatrices

symmetrical with respect to the plane of the ellipse

(Figure 12) – it is in a one-to-one relationship with a

complete toric domain belonging to the ! ¼ 0

Apollonian tiling. One can therefore speak of ‘!� 0

Apollonian packing’, which has the same fractal prop-

erties as the ! ¼ 0 Apollonian packing. We shall not
dwell any longer on this geometry, and we refer the

reader to (22) for a complete discussion. However, the

energy properties, which can be calculated in the same

Figure 12. Perspective view of FCDs of the same
eccentricity in contact in a grain boundary.

Figure 11. Ellipses of the same eccentricity tiling a portion
of a grain boundary. The radius of curvature of the circle of
the marked ellipse, centred in the focus F and tangent to the
apex, is a–c, which is smaller than the radius of curvature of
the ellipse at the apex. This circle is thus entirely inside the
ellipse. All the circles and the arcs of circles of the figure are
centred in F. They figure the intersections of the smectic
layers with the plane of the ellipse. t is the direction of the
local rotation vector of the disclination. The dislocation
segments that run from an ellipse to another one have all
the same orientation and the same density b/2a = e.
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fractal approach as for the ! ¼ 0 case, depend on the

angle of misorientation !, so that the residual areas

might be, according to the case, large or microscopic,

and the limiting scales of the fractal distribution thus

different from the ! ¼ 0 Apollonian packing.

The residual regions are pieces of grain bound-

aries and adopt either a model of a curvature wall
or of a dislocation wall (also called the Grandjean

model), which we discuss hereunder. The calculation

of the energy of the grain boundary shows that the

Grandjean model is favoured for small misorienta-

tions (when the layers are practically parallel to the

grain boundary) and the curvature model is

favoured for large ones (when the layers are closer

to the normal than to the grain boundary) (22)
(Figure 13).

3.3.1 The Grandjean model

Again, the dislocations that are attached to the

ellipse of an isolated FCD, characterised by the

quantities a and e, have a total Burgers vector b = 2

ae. In practice, the dislocations run parallel to the tilt

axis, all with the same sign and a constant density b/

2a = e (Figure 11). Since e = sin!/2 the misorienta-
tion of the related grain boundary is precisely !; the

layers in the regions inside the FCDs and outside are

in register. In a TFCD, the circle is of vanishing

eccentricity, b = 2a e = 0 – there are no dislocations

attached to it. A TFCD can be smoothly embedded

into a system of flat and parallel layers with ! ¼ 0.

Experimental realisations of ellipses and their

attached dislocations have been observed in light
microscopy, in both thermotropic (38) and lyotropic

(39) SmAs. It is directly visible that the dislocations

have large, giant Burgers vectors, whose magnitude

scales with the size of the ellipses, and that they are

located in the plane of the ellipses. The dislocation

lines have an edge character. This is in contrast with

the result obtained for ! ¼ 0 (Section 3.2), which

predicts residual regions of microscopic size.

3.3.2 The curvature model

At large misorientations, the residual areas are relaxed

by curvature walls. The energy cost has two origins:

the curvature walls in the residual regions (but the

layers do not abut abruptly on the grain boundary),
and a mismatch in curvature of the layers inside and

the layers outside the FCDs. The curvature wall

energy (per unit area) can be written as (39)

Fcurv ¼ 2B�

�
tan

�

2
� �

2

�
cos

�

2
; � ¼ �� !: ð6Þ

Two remarks:

(i) An implicit assumption of the model is the existence

of an Apollonian tiling, i.e. a compact packing with

tiles of different sizes, not fixed in advance, and

with no entropy of mixing, since an iterative filling

obeys quasi deterministic rules (see (40) for a com-

parison between scaled and entropic tilings). The
smaller conics are certainly those that would con-

tribute more to the entropy, but such objects are

not present, because the residual areas are macro-

scopic. This remark might be a strong indication of

the physical reality of the Apollonian tiling.

(ii) The model above has been discussed for a SmA.

However, its basic features remain valid for other

lamellar phases, e.g. SmC LCs, in which chevron

walls are often split into FCDs (41). The chevron

formation is ruled by surface anchoring and

depends on the actual geometry. The tilt of mole-

cules within the SmC layers causes other complica-

tions, both topological (disclination lines in the

vector field of molecular projections onto the layers

(42–44)) and energetical (a finite energy of tilt).

4. Boundary conditions and colloidal templating

The surface anchoring driven process of TFCD forma-

tion is in fact very widely met. The best known example

dates back to the pioneering work of Friedel (5) and the

formation of a SmA phase upon cooling from the iso-
tropic melt that occurs through nuclei of complex shape

and structure (Figure 1(b)) called the ‘bâtonnets’ by

Friedel. The simplest model of a bâtonnet would be a

sphere with tangential boundary conditions. Note that

these boundary conditions are incompatible with the

concentric packing of the SmA layers, which would

otherwise be one of the candidates for the local arrange-

ment of the layers in a spherical volume. However, the
equilibrium can be achieved by a combination of layers

with spherical curvature and TFCDs. In 1982, Sethna

and Kleman demonstrated (45) that a family of coni-

cally shaped FCDs with a common apex can have the
Figure 13 (a) Curvature wall; (b) Grandjean wall. In both
cases, the lines represent the layers. Adapted from (13).
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interstices between them filled with spherical layers that

have the centre of curvature at the common apex.

Figure 14 illustrates the smooth matching between a

conically shaped TFCD and a spherical packing. Note

that the layers approach the conical boundary separat-

ing the two types of packing at a right angle, thus there is

no surface discontinuity there. The iterative filling starts
at the scales of the radius of the sphere and ends at the

scales b�,K= �? � �jj
� �

(35). Fournier and Durand (46)

have extended this analysis to the general case of non-

spherical bâtonnets, thus taking into account another

important energy contributed, associated with the sur-

face tension of the SmA–isotropic interface.

The interest in the substrate-induced formation of

TFCDs has recently been revived thanks to the obser-
vation that they can be formed in a well-controlled

geometry of confinement, either at substrates with

patterned anchoring conditions (47, 48) or in rectan-

gular microchannels (49–52). By controlling the sur-

face properties and the type of SmA material, one can

control the smallest size of the domains, b*. On the

other hand, the largest size L can be controlled by the

thickness of the SmA slab, or by the depth of the
channel in which the SmA is confined. Of course, for

very narrow channels, not only the depth but also the

width of the channel can be used as a controlling

parameter (52). In some applications, it is desirable

to overcome the effect of hybrid alignment and to

achieve a uniform alignment of layers. This can be

done by reducing the thickness of the SmA film

below some critical value related to b*. Recently,
Reznikov et al. (53) demonstrated that the FCDs can

be suppressed if the SmA phase forms from the iso-

tropic phase slowly and in the presence of a strong

temperature gradient. Note that the dynamical aspects

of FCDs are still poorly understood. FCDs can also be

introduced in the SmA samples by external electric

and magnetic fields (54–60), even if the boundary

conditions favour a uniform system of layers. Some
of the first electrically-driven display modes using LCs

were based on focal conic textures in smectic materials

(32). Nowadays, electrically driven formation of focal

conic textures in cholesteric LCs is one of the most

promising directions in the development of bistable

displays and displays on flexible substrates that use

no polarisers, see, for example, (58). From a theoreti-

cal point of view (59, 60), field-induced nucleation is
practically impossible without artificial sites of nuclea-

tion, such as foreign particles, dislocations, small

‘seed’ FCDs, etc, as the process is determined by the

balance of the elastic energy that is linear in the FCD

size, ,Kb, and the dielectric or diamagnetic aniso-

tropy energy proportional to the volume of the dis-

torted region, ,b3. The balance of the two terms

produces a huge energy barrier (59, 60) that cannot
be overcome in homogeneous nucleation.

The surface-induced regular arrays of TFCDs can

be used as templates to create similar arrays of col-

loidal particles (51). Experimentally, it was observed

by Yoon et al. (51) that small colloidal spheres added

to the SmA material end up distributed regularly in

the TFCD hexagonal array (Figure 15). To explain

this phenomenon, we recall that the behaviour of a
colloidal particle in the LC environment is strongly

dependent on the surface anchoring at the particle–

LC interface and the elasticity of the LC host (61). In

particular, small particles tend to migrate towards

linear defects, such as disclinations, thus reducing

the overall energy of the system (62). In our case,

such a line is the vertical line defect. Another line

defect is the circular base of the TFCD, but the par-
ticles did not accumulate there, despite the fact that

gravity would have favoured this location as opposed

to the location in the bulk of the film. A plausible

reason for the particle’s ‘levitation’ in the bulk might

be the tangential surface anchoring of SmA mole-

cules at its surface, similar to that described by

Blanc and Kleman (63).

Figure 14. Smooth matching of spherical layers and layers
belonging to TFCDs of conical shape. Texture of a SmA
droplet suspended in the glycerine matrix with the family of
TFCDs and interstices filled with spherical layers, according
to (34).

Figure 15. Colloidal templating with TFCDs. The array of
TFCDs in a microchannel filled with a SmA is used to
arrange 1 mm colloidal particles into regular hexagonal
arrays (50). The particles are trapped at the axial defects of
the TFCDs and can levitate in the bulk resisting the gravity
effects.
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Let us consider the difference in the molecular struc-

ture at the core of the vertical and circular defects

(Figure 15). Locally, the director n̂ around the circular

defect is pointed normally to the defect core, forming a

radial structure. At the vertical line defect, the situation

is different: n̂ forms a cone with an angle at the apex

� ¼ arctan b
z

(measured with respect to the z-axis) that
decreases from � ¼ �=2 at the lower end of the defect,

z ¼ 0, to a smaller value as the z-coordinate increases.

The surface anchoring energy cost of placing the parti-

cle at different z locations along the axis can be esti-

mated by integrating the standard Rapini–Papoular

anchoring potential (24) over the spherical surface of

the particle, Fanch ¼ ð�? � �Þ
H

1� ðn̂ � v̂Þ2
h i

ds, where

v̂ is normal to the particle’s surface. We assume that the
particle radius r is much smaller than the radius b of the

TFCD, so that variations of � at the particle’s surface

are neglected. A routine integration yields

Fanch ¼
4

3
� r2ð�? � �jjÞ 1þ 1

1þ �2

� �
; ð7Þ

where � ¼ z=b; in other words, the larger the value of z,

the smaller the anchoring penalty for having the parti-

cle at the core of the defect. Note that the last formula is

applicable for any location at the circular defect, in
which case � ¼ 0, and the anchoring energy assumes

its maximum value. As for the axial line defect, the

vertically-resolved force corresponding to the poten-

tial (8) and pushing the particle upwards,

fanch ¼ � @Fanch

@z
¼ 8

3
� r2 �

b ð1þ�2Þ2 ð�? � �jjÞ, is significant.

For the typical (35) ð�? � �jjÞ � 10�5 Jm�2, r = 0.5 mm,

b = 2 mm, and �, 1, one finds fanch � 10pN, much lar-

ger than the gravity force fg ¼ 4
3
�r3	g , 0:01 pN (here

	,103 kg m�3 is the difference in the densities of silica

particle and a LC, g ¼ 9:8 ms�2 is the standard gravity).

5. Focal conic domains and three-dimensional imaging

The studies of relatively complex geometries of dis-

tortions associated with FCDs and other configura-

tions inspired an interest in the development of new
approaches to three-dimensional LC images. A reg-

ular polarising microscopy texture, such as the one in

Figure 1, is produced after the polarised light travels

through the birefringent specimen; the modulation in

light intensity is determined by the optical retardance

integrated over the entire pathway of light.

Therefore, polarising microscopy yields only a two-

dimensional image of the three-dimensional config-
uration. Note that in a regular uniaxial SmA, the

local optic axis coincides with the normal to the

layers. The director profile along the direction of

observation (‘vertical cross section’) is hard to

decipher; as illustrated by Bellare et al. (64), polaris-

ing microscopy images of such different objects as

spheres and FCDs in flat samples of SmA are practi-

cally indistinguishable. Of course, a sample can be

constructed in such a way that it can be viewed from

different sides (a cylindrical capillary, for example),

but this solution is not a universal one, as in most
cases researchers are interested in sandwich-like sam-

ples with a thin (tens of microns or less) LC slabs. It is

precisely the director configuration in the vertical

cross-section of such a cell that is often the most

valuable and desirable in studies of LCs.

Three-dimensional imaging of LCs can be

achieved relatively easily with Fluorescence

Confocal Polarising Microscopy (FCPM) (65, 66),
confocal Raman microscopy (67) and, with a sig-

nificantly more complicated approach, by coherent

anti-Stokes Raman scattering (CARS) microscopy

(68–70). In FCPM, the LC is doped with a fluor-

escent dye, the molecules of which are sufficiently

anisometric to align themselves parallel to the LC

molecules and thus parallel to the local director (we

restrict the consideration by the simplest case of
rod-like molecules) (65, 66). If the sample is probed

with a tightly focused and linearly polarised laser

beam, this will cause fluorescence of the dye. The

intensity of fluorescence would depend on the angle

� between the polarisation of light and the transi-

tion dipole of the dye, typically I / cos4 �. The

confocal scheme of the microscopy allows one to

register the fluorescent signal only from the prese-
lected small volume in which the beam is focused.

Light coming from the neighbourhood of the

inspected ‘voxel’ is blocked from reaching the detec-

tor. To obtain a three-dimensional image of the

whole sample, the tightly focused laser beam scans

the specimen voxel by voxel. Using a computer, the

data, which essentially describes a three-dimensional

pattern, can be presented as horizontal or vertical
cross-sections of the sample. Of course, the confocal

scheme is intrinsically at odds with the birefringent

nature of the inspected medium, as the ordinary and

extraordinary waves cannot be focused in the same

way. However, the difference in the location of the

focus of the two modes is determined roughly as

�,z ne � noð Þ=�n, where z is the depth of scanning in

the birefringent medium and ne; no; �n are the extra-
ordinary, ordinary and some average refractive

indices of the LC. Therefore, even for relatively

highly birefringent materials with ne � noð Þ=�n , 0:1,

one can still achieve a resolution on the order of 1

mm with samples of 10 mm thickness. Of course,

better results are achieved for low birefringent

LCs. Figure 16 shows the image of a FCD with a

base located at the boundary of the SmA cell.
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FCPM allows one to use more than one fluores-

cent dye in order to trace the different directions of the

molecular order. This approach allows one to explore

FCDs in biaxial SmAs (66), in which the one-

dimensional positional order is accompanied by a
nematic-like order within each layer with the director

n̂b ¼ �n̂b, which is perpendicular to the normal

n̂a ¼ �n̂a to the layers. It turned out that the FCDs

in these phases can be associated with linear disclina-

tions in the n̂b field and the distortions extend well

beyond the base of the FCDs (66).

Although the amount of dye needed to achieve a

good quality imaging with FCPM is very small, only
about 0.01 wt% as compared to the amount of the LC

itself, the very presence of the dye is not a desirable

feature. Recently, the possibilities of using a label-free

approach for three-dimensional imaging of LCs have

been demonstrated. The techniques are based on con-

focal Raman microscopy (67) and on less invasive and

faster CARS microscopy reviewed recently by Evans

and Xie (68). Not only are CARS and Raman micro-
scopies label-free; they also allow one to determine the

three-dimensional pattern of orientation of prese-

lected chemical bonds in the sample, such as the CN,

CH, or CO bond. In the CARS process, the sample is

excited by two laser beams, at two optical frequencies,

!p (‘pump’) and !s (‘Stokes’), one of which is tuneable

so that the beating frequency (the difference !p � !s)

can be adjusted to be in resonance with a preselected
molecular vibration in the sample. If such a resonance

is achieved, the sample generates a strong signal at the

anti-Stokes frequency, !as ¼ 2!p � !s, through a four

wave mixing process. This signal produces the optical

contrast in imaging; its intensity depends on the polar-

isation of all the light beams involved and on the state

of orientation of the molecular vibration. The advan-

tage of CARS over Raman microscopy is mostly in the
much faster acquisition of the image (69). Of course,

CARS imaging of LCs suffers from the same limita-

tions related to birefringence as FCPM does, as dis-

cussed in (69, 70). However, a huge advantage of

CARS is in the opportunity to obtain, in a non-inva-

sive way, the chemically sensitive information on

three-dimensional patterns of orientational order.

6. Conclusion

The considerations above have been restricted to the

simplest lamellar phase, the uniaxial smectic A phase.

However, FCDs appear as a general feature in other
lamellar phases, whenever a one-dimensional posi-

tional order and layered structure is accompanied by

a fluid- or nematic-like two-dimensional order, such as

SmC, biaxial SmA, and even cholesteric phases, pro-

vided the scale of distortions is much larger than the

cholesteric pitch. As already indicated, FCDs in these

phases are accompanied by additional defects in the

vector (or director) field specified by the molecular
order within the layers. FCDs are often seen in SmC

phases decorating the so-called ‘chevron’ structures

(41, 71); the latter represents a domain wall that

forms when the smectic layers, being originally per-

pendicular to the bounding plates, shrink and tilt. The

overall geometry is similar to the tilt grain boundary

that is relaxed either through the FCDs, as considered

above for the SmA phase, or through a wave on undu-
lations near the chevron ridge (72).

An especially intriguing question is whether the

FCDs can appear as ‘intrinsic’ structural elements

that guarantee the stability of phases in which the

layers are bent rather than flat. A good example is the

sequence of the sponge phase-lamellar phase-micellar

phase observed in the lyotropic phases of certain sur-

factants. The lamellar phase, the ground state of which
is flat layers, exhibits FCDs of different Gaussian cur-

vature when the system approaches the transition into

a different phase. In the vicinity of the micellar phase,

one observes the FCD-II of positive Gaussian curva-

ture (12), while in the vicinity of the sponge phase, one

observes the FCD-I of negative Gaussian curvature

and saddle-splay type layer deformations (20, 40).

Metastable ‘onion’-like structures have been also
observed as the nuclei of lamellar phase by Iwashita

and Tanaka (73). In principle, the two phases neigh-

bouring the lamellar phase can be considered as assem-

blies of elementary FCDs, of either type I or type II.

One can certainly learn about the corresponding phase

transitions by considering elementary excitations in the

form of FCD-I and FCD-II. DiDonna and Kamien

(74) proposed a smectic ‘blue phase’, a thermotropic
analogue of the ‘sponge phase’, in which the layers

added on top of a seed layer represent a minimal sur-

face. As compared to the system of flat layers, such a

configuration is stabilised by the gain in energy of

saddle-splay deformations. Note that a set of FCDs

can also provide a gain in saddle-splay energy; more-

over, Dupin cyclides, being strictly parallel to each

other and having focal lines rather than focal surfaces,
might yield an additional energetic advantage as com-

pared to the structure based on the minimum surface.

Figure 16. FCPM texture of the vertical cross-section of a
SmA cell with a FCD with the base at the bottom plate. The
dark bands at the top and bottom are the two glass plates
bounding the slab. The texture is provided by I. Smalyukh.
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The role of dislocations in the properties of smec-

tics (75, 76) under flow has recently emerged as a new

subject of research. It is well known that dislocations

are the leading actors in the plastic deformation of

solids (23), and it is therefore of a particular interest

to estimate in which respect smectics can flow like

solids (77). It appears that screw dislocations (ortho-

gonal to the layers) and edge dislocations (parallel
to the layers) have different rheological behaviours

(75–77), but a number of questions remain to be

explored, e.g. how dislocations affect the relation

between the stress and the strain rate. On the other

hand, practically nothing is known about the rheolo-

gical properties of FCDs, although it is expected that

the interplay with dislocations through the presence of

kinks plays a leading role; in that respect, it is worth
mentioning the observed changes of size and eccentri-

city of FCDs at the SmA–Nem transition (28, 29).

To conclude, the story of FCDs, started 100 years

ago, continues to develop. One might expect the devel-

opment of new refined display devices that use the light

scattering abilities of FCDs in various electrically, ther-

mally or optically driven media. FCD ‘lithographic’

templating is an entirely new and interesting direction.
Even in the field of basic physics, the appearance of

FCDs to guarantee the stability of various structures is

still the phenomenon to explore. Finally, one might

expect an entirely new level of excitement once the

research shifts from the study of static problems to the

dynamics associated with FCDs.

Note

1We recall that a wedge disclination line segment is a
line segment parallel to the rotation vector, here

denoted by W; a twist disclination line segment is per-

pendicular to the rotation vector W (cf. (23)).
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